Forecasting Non-Stationary Diarrhea, Acute Respiratory Infection, and Malaria Time-Series in Niono, Mali
نویسندگان
چکیده
BACKGROUND Much of the developing world, particularly sub-Saharan Africa, exhibits high levels of morbidity and mortality associated with diarrhea, acute respiratory infection, and malaria. With the increasing awareness that the aforementioned infectious diseases impose an enormous burden on developing countries, public health programs therein could benefit from parsimonious general-purpose forecasting methods to enhance infectious disease intervention. Unfortunately, these disease time-series often i) suffer from non-stationarity; ii) exhibit large inter-annual plus seasonal fluctuations; and, iii) require disease-specific tailoring of forecasting methods. METHODOLOGY/PRINCIPAL FINDINGS In this longitudinal retrospective (01/1996-06/2004) investigation, diarrhea, acute respiratory infection of the lower tract, and malaria consultation time-series are fitted with a general-purpose econometric method, namely the multiplicative Holt-Winters, to produce contemporaneous on-line forecasts for the district of Niono, Mali. This method accommodates seasonal, as well as inter-annual, fluctuations and produces reasonably accurate median 2- and 3-month horizon forecasts for these non-stationary time-series, i.e., 92% of the 24 time-series forecasts generated (2 forecast horizons, 3 diseases, and 4 age categories = 24 time-series forecasts) have mean absolute percentage errors circa 25%. CONCLUSIONS/SIGNIFICANCE The multiplicative Holt-Winters forecasting method: i) performs well across diseases with dramatically distinct transmission modes and hence it is a strong general-purpose forecasting method candidate for non-stationary epidemiological time-series; ii) obliquely captures prior non-linear interactions between climate and the aforementioned disease dynamics thus, obviating the need for more complex disease-specific climate-based parametric forecasting methods in the district of Niono; furthermore, iii) readily decomposes time-series into seasonal components thereby potentially assisting with programming of public health interventions, as well as monitoring of disease dynamics modification. Therefore, these forecasts could improve infectious diseases management in the district of Niono, Mali, and elsewhere in the Sahel.
منابع مشابه
A new adaptive exponential smoothing method for non-stationary time series with level shifts
Simple exponential smoothing (SES) methods are the most commonly used methods in forecasting and time series analysis. However, they are generally insensitive to non-stationary structural events such as level shifts, ramp shifts, and spikes or impulses. Similar to that of outliers in stationary time series, these non-stationary events will lead to increased level of errors in the forecasting pr...
متن کاملState–Space Forecasting of Schistosoma haematobium Time-Series in Niono, Mali
BACKGROUND Much of the developing world, particularly sub-Saharan Africa, exhibits high levels of morbidity and mortality associated with infectious diseases. The incidence of Schistosoma sp.-which are neglected tropical diseases exposing and infecting more than 500 and 200 million individuals in 77 countries, respectively-is rising because of 1) numerous irrigation and hydro-electric projects,...
متن کاملSome New Methods for Prediction of Time Series by Wavelets
Extended Abstract. Forecasting is one of the most important purposes of time series analysis. For many years, classical methods were used for this aim. But these methods do not give good performance results for real time series due to non-linearity and non-stationarity of these data sets. On one hand, most of real world time series data display a time-varying second order structure. On th...
متن کاملUsing Wavelets and Splines to Forecast Non-Stationary Time Series
This paper deals with a short term forecasting non-stationary time series using wavelets and splines. Wavelets can decompose the series as the sum of two low and high frequency components. Aminghafari and Poggi (2007) proposed to predict high frequency component by wavelets and extrapolate low frequency component by local polynomial fitting. We propose to forecast non-stationary process u...
متن کاملپیشبینی خشکسالی هیدرولوژیک با استفاده از سریهای زمانی
INTRODUCTION Hydrologic drought in the sense of deficient river flow is defined as the periods that river flow does not meet the needs of planned programs for system management. Drought is generally considered as periods with insignificant precipitation, soil moisture and water resources for sustaining and supplying the socioeconomic activities of a region. Thus, it is difficult to give a univ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS ONE
دوره 2 شماره
صفحات -
تاریخ انتشار 2007